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Abstract

In this article we present a quadrature-free essentially non-oscillatory finite volume scheme of arbitrary high order of
accuracy both in space and time for solving nonlinear hyperbolic systems on unstructured meshes in two and three space
dimensions. For high order spatial discretization, a WENO reconstruction technique provides the reconstruction polyno-
mials in terms of a hierarchical orthogonal polynomial basis over a reference element. The Cauchy–Kovalewski procedure
applied to the reconstructed data yields for each element a space–time Taylor series for the evolution of the state and the
physical fluxes. This Taylor series is then inserted into a special numerical flux across the element interfaces and is subse-
quently integrated analytically in space and time. Thus, the Cauchy–Kovalewski procedure provides a natural, direct and
cost-efficient way to obtain a quadrature-free formulation, avoiding the expensive numerical quadrature arising usually for
high order finite volume schemes in three space dimensions. We show numerical convergence results up to sixth order of
accuracy in space and time for the compressible Euler equations on triangular and tetrahedral meshes in two and three
space dimensions. Furthermore, various two- and three-dimensional test problems with smooth and discontinuous solu-
tions are computed to validate the approach and to underline the non-oscillatory shock-capturing properties of the
method.
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1. Introduction

The computational effort associated with numerical quadrature in high-order finite volume schemes
increases drastically with the number of space dimensions. Whereas in one space dimension the element
boundaries are just the interval endpoints, i.e. zero-dimensional, they are already one-dimensional edges in
two space dimensions and two-dimensional faces in the three-dimensional case. Considering that the numer-
ical flux has also to be integrated in time, one ends up with the computation of d-dimensional space–time inte-
grals for evaluating the inter cell fluxes in a computational domain in d-dimensional space. The necessity of
numerical quadrature in multiple space dimensions leads to a considerably higher number of flux evaluations
for finite volume schemes compared to, for example, conservative WENO finite difference schemes [3,31], even
on purely Cartesian meshes.

If we further consider volume integrals that will arise automatically in the context of partial differential
equations (PDE) with source terms, one must compute additional d + 1-dimensional space–time integrals over
the element volumes for the source term. The problem is even much more severe for discontinuous Galerkin
finite element schemes [9,11–14] because of enhanced accuracy requirements versus the numerical quadrature
due to the multiplication with the test functions.

Throughout this article we intend the expression quadrature-free to mean the avoiding of numerical quad-
rature using some sort of analytic integration technique. Whereas in the context of discontinuous Galerkin
schemes a quadrature-free formulation was already proposed by Atkins and Shu [2] and van der Ven and
van der Vegt [53] for linear and nonlinear hyperbolic systems, this idea is still quite new for high order finite
volume methods. In [17] an arbitrary high order quadrature-free non-oscillatory finite volume scheme on
unstructured meshes was proposed for linear hyperbolic systems in 2D and 3D. The present article deals
with the extension of this method to the case of nonlinear hyperbolic systems in two and three space
dimensions.

A first attempt to partially get rid of the necessary numerical quadrature in the context of finite volume
schemes for nonlinear hyperbolic systems emerged from the work on the ADER (arbitrary high order deriva-
tives) approach for finite volume schemes developed originally by Toro et al. [49]. The ADER approach is
based on an approximate solution of derivative Riemann problems, also called generalized Riemann problems
in the literature [24,7,6], where the initial condition consists of piecewise polynomials separated by a discon-
tinuity at the element interface in contrast to the original approach of Godunov [26], where the Riemann prob-
lem was defined by piecewise constant initial conditions. Toro et al. proposed a Taylor series in time as
solution for the derivative Riemann problem. The Cauchy–Kovalewski procedure is then used, whereby all
mixed space–time derivatives of the state and the physical flux are obtained by repeatedly differentiating
the governing PDE. All spatial derivatives, needed as input for the Cauchy–Kovalewski procedure, are deter-
mined by the solution of Riemann problems. This procedure finally yields all the coefficients of the temporal
expansion for the state and the flux.

We would like to mention here that the approach proposed by Toro et al. is different from the one pro-
posed by Harten, Engquist, Osher and Chakravarthy in their pioneering work on ENO schemes [27], where
the Cauchy–Kovalewski procedure is applied in the barycenter of each element and the resulting space–time
Taylor series for the state is evaluated at the Gaussian integration points in space and time at both sides of
the interface. The left and right boundary-extrapolated values are then used as arguments for the Riemann
solver, which subsequently computes the interaction of the two space–time Taylor series on both sides of the
interface. The ADER approach of Toro and co-workers first computes the interaction of both sides via the
solution of Riemann problems for the state and all spatial derivatives and then applies the Cauchy–Kova-
lewski procedure. Both methods, however, can be seen as approximate methods to solve the derivative
Riemann problem.

Recently, Titarev and Toro [47] proposed the ADER flux expansion variant, where the numerical flux could
be integrated analytically at least in time. However, they did not use all the additional information on the
mixed space–time derivatives generated by the Cauchy–Kovalewski procedure in order to avoid also numer-
ical quadrature in space.

The main goal of this article is now to fully exploit the space–time Taylor series and to subsequently con-
struct a cost-efficient finite volume method based on this information. An important building block for the



206 M. Dumbser et al. / Journal of Computational Physics 226 (2007) 204–243
high order accurate spatial discretization on unstructured meshes is the WENO reconstruction operator pro-
posed by Dumbser and Käser in [17] for linear hyperbolic systems. It provides the reconstruction polynomials
using hierarchical orthogonal basis functions on a reference element as typically used for discontinuous Galer-
kin finite element schemes. However, to ensure an essentially non-oscillatory behaviour also for nonlinear
hyperbolic systems, a special reconstruction in characteristic variables is used. Once the reconstruction poly-
nomials are obtained, all spatial derivatives at the current time level are computed in the element barycenter
with respect to a space–time reference element. To be able to carry out the Cauchy–Kovalewski procedure
with the data given with respect to this space–time reference element, the governing PDE has to be rewritten
for the reference coordinate system. Then, the Cauchy–Kovalewski procedure is applied in order to produce
the full space–time Taylor series for the state and the physical flux inside each element. Using this procedure in
the element barycenter to produce a high order one-step time discretization was already proposed by Harten
et al. [27]. However, their method was not quadrature-free, since they used Gaussian quadrature in time. Since
they only dealt with the one-dimensional case, the problem of spatial quadrature did not arise in their context.

Having computed the space–time Taylor series of the state and the physical flux in all elements, we now
propose to use a special numerical flux function at the element interfaces which is composed of a leading flux,
evaluated at the space–time barycenter of the element interface plus a quadrature-free high order correction.
The leading flux has to be evaluated only d + 1 times per element, as for first and second order finite volume
schemes, independently of the order of accuracy of the method. Typically, we use either the original Godunov
flux [26] or HLL-type fluxes [23,29,50] as leading fluxes, but any other Riemann solver would work equally
well. The higher order corrections are then obtained by a quadrature-free corrector flux where all space–time
integrals are computed analytically. For this corrector flux, we typically use Roe’s scheme [39], where the Roe
matrix is evaluated only once at the left and right states at the space–time barycenter of the interface and then
held constant, i.e. frozen, for the whole interface. Freezing the Roe matrix at the interface is necessary for ana-
lytical integration. Instead of Roe’s scheme, also the HLL family of schemes may be used in the corrector flux.
The signal velocities, however, must be frozen for each element interface, see also [53], where two of the HLLC
signal speeds were frozen for the interface.

Our approach is similar to the Taylor quadrature developed recently in the framework of space–time DG
schemes [52,53]. The difference is the fact that our space–time Taylor series is the result of the Cauchy–
Kovalewski procedure applied to the reconstructed polynomials at the current time level tn, whereas the
space–time DG method directly evolves a polynomial space–time series expansion for the unknowns inside
each element. The advantage of the Cauchy–Kovalewski based approach is that it remains fully explicit in
time, whereas the space–time DG method is implicit. However, the latter method is unconditionally stable,
which may be very useful in many CFD applications.

The outline of this paper is as follows. First, in Section 2, we briefly present the WENO reconstruction algo-
rithm in characteristic variables for unstructured triangular and tetrahedral meshes in two and three
space dimensions. Second, the algorithm for performing efficiently the Cauchy–Kovalewski procedure in a
space–time reference element is presented in Section 3, for the three-dimensional nonlinear Euler equations
of compressible gas dynamics. This is the main building block of our approach since it produces the necessary
space–time Taylor series for the state and the flux that is necessary to do an analytical space–time integration
over the element boundaries. Third, we present the fully discrete quadrature-free formulation of the scheme
in Section 4. Subsequently, in Section 6, numerical convergence studies are carried out on unstructured trian-
gular and tetrahedral meshes for smooth test problems up to sixth order of accuracy in space and time. Finally,
two- and three-dimensional test cases with smooth and discontinuous solutions are presented in Section 7. A
summary with conclusions and perspectives is given in Section 8.
2. Reconstruction

Finite volume methods contain as a distinguished feature a set of integral cell averages. These are sufficient
for the construction of first order methods. The design of higher order finite volume methods usually requires
a reconstruction (or recovery) procedure starting from cell averages and yielding higher order polynomials, see
[1,4,25,37,30,41,43].
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2.1. Reconstruction on unstructured meshes in two and three space dimensions using hierarchical orthogonal

basis functions

The main ingredient of the spatial discretization of the proposed arbitrary high order quadrature-free finite
volume scheme for nonlinear hyperbolic systems is the WENO reconstruction algorithm proposed by Dumb-
ser and Käser in [17], where it was subsequently applied to construct a quadrature-free ADER-FV scheme for
linear hyperbolic systems. The computational domain X is discretized by conforming elements T(m), indexed
by a unique mono-index m ranging from 1 to the total number of elements E. The elements are chosen to be
triangles in 2D and tetrahedrons in 3D. The union of all elements is called the triangulation or tetrahedrization
of the domain X, respectively,
Fig. 1.
ð0; 1Þ a
the po
TX ¼
[E
m¼1

T ðmÞ: ð1Þ
As usual for finite volume schemes, data is represented by the cell averages of a conserved quantity Up inside
an element T(m),
U ðmÞp ¼ 1

jT ðmÞj

Z
T ðmÞ

Up dV ; ð2Þ
where |T(m)| denotes the volume of the element. In order to achieve high order of accuracy for the spatial dis-
cretization, we need to reconstruct higher order polynomials wp from the given cell averages. We write the
reconstruction polynomial for the conserved quantity Up in element T(m) as
wðmÞp ð~nÞ ¼ ŵðmÞpl Wlð~nÞ; ð3Þ
where~n ¼ ðn; g; fÞ are the coordinates in a reference coordinate system. Fig. 1 depicts the reference elements
TE with the element barycenters and the face barycenters. In 3D, the transformation from the physical coor-
dinate system x–y–z into the reference coordinate system n–g–f is defined by
x ¼ X ðmÞ1 þ ðX
ðmÞ
2 � X ðmÞ1 Þnþ ðX

ðmÞ
3 � X ðmÞ1 Þgþ ðX

ðmÞ
4 � X ðmÞ1 Þf;

y ¼ Y ðmÞ1 þ ðY
ðmÞ
2 � Y ðmÞ1 Þnþ ðY

ðmÞ
3 � Y ðmÞ1 Þgþ ðY

ðmÞ
4 � Y ðmÞ1 Þf;

z ¼ ZðmÞ1 þ ðZ
ðmÞ
2 � ZðmÞ1 Þnþ ðZ

ðmÞ
3 � ZðmÞ1 Þgþ ðZ

ðmÞ
4 � ZðmÞ1 Þf;

ð4Þ
where X ðmÞi , Y ðmÞi and ZðmÞi denote the physical vertex coordinates of the considered element T(m). In two space
dimensions, the same transformation is valid for x and y, setting f = 0. Throughout the whole paper we use
classical tensor notation, which implies summation over each index appearing twice. Whereas the recon-
structed degrees of freedom ŵðmÞpl are not space-dependent, the reconstruction basis functions Wl are polynomi-
als of degree M and depend on space. The index l ranges from 0 to its maximum value L � 1, where
L ¼ 1

2
ðM þ 1ÞðM þ 2Þ and L ¼ 1

6
ðM þ 1ÞðM þ 2ÞðM þ 3Þ are the numbers of reconstructed degrees of freedom

in 2D and 3D, respectively, depending on the order of the reconstruction. We use the hierarchical orthogonal
reconstruction basis functions that are given for example in [10,15] for triangles in 2D and tetrahedrons in 3D.
Transformation from the physical triangle and tetrahedron T(m) to the canonical reference triangle TE with nodes ð0; 0Þ, ð1; 0Þ and
nd the canonical reference tetrahedron TE with nodes ð0; 0; 0Þ, ð1; 0; 0Þ, ð0; 1; 0Þ, ð0; 0; 1Þ. The crosses show the element barycenters,
ints show the barycenters of the element faces.
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Details of the WENO reconstruction algorithm on unstructured meshes in 2D and 3D and how the degrees
of freedom ŵpl can be computed on each stencil can be found in [17]. Here we briefly list the main points for
reconstruction on an element T(m):

First, construct the set
S
ðmÞ
WENO ¼

[ns

i¼1

S
ðmÞ
i with S

ðmÞ
i ¼

[ne

k¼1

T ðjiðkÞÞ ð5Þ
of WENO reconstruction stencils. Here, k with 1 6 k 6 ne is a local index, counting the elements in each
stencil and j = ji(k) is the mapping from the local index k to the global indexation of the elements in TX.
We set by definition ji(1) = m and thus the first element in each stencil (k = 1) is always the considered element
T(m). The set of stencils S

ðmÞ
i consists of one central stencil ðSðmÞ

1 Þ and a set of one-sided stencils (2 6 i 6 ns

with ns = 7 in 2D and ns = 9 in 3D) each containing a number of ne elements that must be larger than the num-
ber of degrees of freedom L. This, unfortunately, leads to overdetermined reconstruction equations that have
to be solved, but is necessary for stability reasons [4,25].

Then, transform all elements T ðjiðkÞÞ that constitute the reconstruction stencils into the reference coordinate
system associated with the element T(m) for which reconstruction is to be done. Thus, T(m) is mapped to the
reference element TE, the other stencil elements are mapped to some neighbors eT ðjiðkÞÞ of the reference element.
The stencils mapped in this manner are subsequently called fSðmÞ

i .
To obtain the reconstruction equations we require, for each reconstruction polynomial, integral conserva-

tion in all elements of a stencil. The final set of reconstruction equations on each transformed stencil fSðmÞ
i is

according to [17]:
Z
T E

Wlð~nðeT ðjÞ;~NÞÞd~nd~gd~f

� �
ŵðmiÞ

pl ¼ jT EjU ðjiðkÞÞ
p ; 8eT ðjiðkÞÞ 2fSðmÞ

i : ð6Þ
Here,~n ¼ ðn; g; fÞT is the vector of the coordinates in the reference coordinate system associated with element
T(m) and ~N ¼ ð~n; ~g;~fÞT is the vector of coordinates in another reference coordinate system. The latter one is
associated to each transformed element eT ðjiðkÞÞ in order to carry out the numerical integration of the left hand
side for which we use classical multidimensional Gaussian quadrature of appropriate order. For an exhaustive
overview of such multidimensional quadrature formulae see [44]. The resulting overdetermined linear equation
system is solved using a least-squares algorithm which preserves exact integral conservation in the considered
element T(m). The pseudo-inverse of the reconstruction matrix is stored for all elements and for all WENO
stencils. For more details on the stencil search algorithm, on the notation and on the derivation and solution
of Eq. (6) see [17].
2.2. Reconstruction in characteristic variables

In order to produce an essentially non-oscillatory reconstruction polynomial, we use a nonlinearly weighted
combination of reconstruction polynomials obtained on different stencils, in which smoother reconstructions
are preferred. For a history of developments concerning high order accurate polynomial recovery for finite
volume methods on unstructured triangulations see the references [1,4,17,25,37,30,33,41,43], and for high
order ENO and WENO methods on structured grids see for instance [3,28,31].

Whereas in [17] the reconstruction is done componentwise for linear systems, in this section we present a
special characteristic reconstruction for nonlinear systems. We point out that the procedure described in this
article is different from the usual characteristic ENO or WENO reconstruction described in the research lit-
erature on ENO and WENO schemes. Compared to the ENO scheme of Harten et al. [27], our method applies
the characteristic transformation not onto the cell averages (i.e. the input of the reconstruction), but onto the
degrees of freedom ŵpl (i.e. the output of the reconstruction). This is cheaper for our kind of least-squares
reconstruction since for a robust reconstruction on unstructured meshes we need more cell averages than
the number of degrees of freedom finally obtained. Applying the characteristic transformation to the cell aver-
ages would result in more matrix-vector multiplications than applying the transformation only to the final
degrees of freedom of the reconstruction polynomials. However, it can be easily proven that both formulations
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are equivalent. Furthermore, our characteristic reconstruction also differs from the one usually used in WENO
schemes since standard WENO schemes reconstruct point values. There, the characteristic decomposition is
applied for each spatial Gaussian quadrature point according to the face normal vector of the face under con-
sideration. In our procedure, we reconstruct the entire polynomial with all its coefficients. This makes it nec-
essary to consider all possible characteristic directions simultaneously in order to finally deliver a
reconstruction polynomial in conservative variables that is the combination of the smoothest reconstructions
in each characteristic direction.

In more detail, we apply our WENO algorithm to each characteristic variable of the system, depending on
the direction. On the unstructured meshes considered here we use the face normal vectors~ne as characteristic
directions, where e denotes the number of the edge for triangles in 2D and the number of the face for tetra-
hedrons in 3D. On each stencil fSðmÞ

i , the degrees of freedom defining the polynomial for each characteristic
direction ~ne are
ĉði;~neÞ
pl ¼ ðR~ne

pqÞ
�1 � ŵðmiÞ

ql ; ð7Þ
where R~ne
pq is the matrix of right eigenvectors of the Jacobian matrix in direction~ne of the relevant hyperbolic

system, evaluated for each face normal~ne at the arithmetic average 1
2
ðU ðmÞp þ U ðkeÞ

p Þ of the cell averages of the
considered element T(m) and the associated neighbor element T ðkeÞ at face number 0 6 e 6 NE, where NE is
the number of faces and where we additionally define the zeroth set of characteristic variables to be equal to
the conservative variables themselves, i.e. R~n0

pq ¼ dpq, with the classical Kronecker symbol dpq. We note that
in the following Eqs. (8)–(14) there is no automatic summation induced over index p. First, we compute the
smoothness r of each characteristic polynomial from the quadratic functional according to [17],
rði;~neÞ
p ¼ ĉði;~neÞ

pl � Rlm � ĉði;~neÞ
pm : ð8Þ
Here, Rlm is the universal mesh-independent oscillation indicator matrix that depends only on the desired poly-
nomial degree M of the reconstruction. The non-normalized nonlinear weights ~xði;~neÞ

p are then functions of the
linear weights ki and the previously computed oscillation indicators rði;~neÞ

p . Since the final weights xði;~neÞ
p must

sum to 1, the non-normalized weights ~xði;~neÞ
p must be normalized with their sum. One therefore obtains
xði;~neÞ
p ¼

~xði;~neÞ
pPns

s¼1 ~xðs;~neÞ
p

; with ~xði;~neÞ
p ¼ ki

ð�þ rði;~neÞ
p Þr

: ð9Þ
The linear weights are chosen according to [17], putting a large linear weight k1� 1 on the central stencil and
ki = 1 elsewhere. Finally, we obtain for each characteristic variable for each characteristic direction~ne a recon-
struction polynomial of degree M that is obtained from a nonlinear combination of the reconstruction poly-

nomials on all stencils fSðmÞ
i :
ĉðWENO;~neÞ
pl ¼

Xns

i¼1

xði;~neÞ
p ĉði;~neÞ

pl ; 80 6 e 6 NE: ð10Þ
Since in our approach the final result of the reconstruction operator is one single reconstruction polynomial
defined in the whole element, we still have to perform a selection amongst the various characteristic recon-
struction polynomials obtained by (10). Therefore, we transform all characteristic WENO polynomials back
to conservative variables, i.e.
ŵðWENO;~neÞ
pl ¼ R~ne

pq � ĉ
ðWENO;~neÞ
ql ; 80 6 e 6 NE; ð11Þ
and then choose for each conservative variable the smoothest polynomial obtained from all the different
characteristic reconstructions. First, the oscillation indicators for the polynomials (11) are computed as in
(12),
r~ne
p ¼ ŵðWENO;~neÞ

pl � Rlm � ŵðWENO;~neÞ
pm ; ð12Þ
then the smoothest one is selected according to an ENO-type algorithm:
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x~ne
p ¼

1 if r~ne
p ¼ minðr~n0

p ; r
~n1
p ; . . . ; r

~nNE
p Þ;

0 else:

(
ð13Þ
The final reconstruction polynomial for the conservative variables, valid in the whole element T(m), is then gi-
ven by
ŵWENO
pl ¼

XNE

e¼0

x~ne
p ŵðWENO;~neÞ

pl : ð14Þ
An important feature of the proposed WENO reconstruction algorithm is that it produces the coefficients
ŵWENO

pl of the reconstructed polynomial in each element T(m). It furthermore avoids the problem of negative
weights [30,41], since the linear weights ki are simply chosen such as to put a very large weight k1� 1 on
the central stencil, which should preferably be used in smooth regions of the numerical solution because it
provides the stability and accuracy of the method, and ki = 1 for all the other stencils with i 6¼ 1. We must note
that this simple method to avoid the negative weights has the cost that the optimal order of accuracy of
standard WENO schemes [31,3] can not be reached. With this information we now can compute all spatial
derivatives of the conserved variables at the element barycenter T(m) by performing a change of the basis
via L2 projection. The spatial derivatives are needed later for the Cauchy–Kovalewski procedure. We first
define a set of space–time basis functions
hijklð~n; sÞ ¼
ðn� nBCÞiðg� gBCÞ

jðf� fBCÞksl

i!j!k!l!
; ð15Þ
which correspond to the polynomials associated with a space–time Taylor series of maximum degree M expanded
at the barycenter ~nBC ¼ ðnBC; gBC; fBCÞ of each element and expanded at the current time tn. The coordinate
vectors for the element barycenter are~nBC ¼ ð13 ; 1

3
Þ in 2D and~nBC ¼ ð14 ; 1

4
; 1

4
Þ in 3D, respectively. For the range

of the indices i; j; k; l we have 0 6 i; j; k; l 6 M and 0 6 i + j + k + l 6M. Furthermore, in (15) we have intro-
duced the normalized time
s ¼ t � tn

Dt
: ð16Þ
The numerical solution depending on space and time is written in this basis as
U pð~n; sÞ ¼
oiþjþkþl

oniogiofiosl
U phijklð~n; sÞ :¼ bU pijklhijklð~n; sÞ: ð17Þ
Then, the transformation between the purely spatial reconstruction basis Wlð~nÞ and the zeroth time derivative
level of the space–time Taylor basis hijklð~n; sÞ is carried out by standard L2 projection,
hWn;WmiŵWENO
pm ¼ hWn; hijk0i bU pijk0; ð18Þ
where h:; :i is the standard inner product of two functions over the reference element TE. Hence, the purely
spatial derivatives of the conserved quantities Up follow from the solution of (18) directly as
bU pijk0 ¼ ðhWn; hijk0i�1hWn;WmiÞŵWENO

pm : ð19Þ
The matrix on the right hand side does not depend on the mesh and can be computed once and then stored.
Since it is a sparse matrix, the change of basis can be performed very efficiently.
3. The Cauchy–Kovalewski procedure in the reference element for the three-dimensional Euler equations

The reconstruction yields, for each element, a polynomial distribution at a given time level tn. The resulting
discontinuities at the element faces are then resolved via the solution of generalized (or derivative) Riemann
problems. The solution of such local Cauchy problems involves Taylor series expansions and the substitution
of time derivatives by spatial derivatives via the Cauchy–Kovalewski procedure. In this section, we will present
a new approach for this procedure, which is particularly suited for unstructured meshes.



M. Dumbser et al. / Journal of Computational Physics 226 (2007) 204–243 211
It is a particular and very important feature of triangular and tetrahedral elements that the mapping from the
physical x–y–z coordinate system to the n–g–f reference coordinate system leads to a constant Jacobian matrix
for the mapping. This allows us to rewrite the governing PDE easily in terms of the space–time derivatives in the
reference system. For general quadrilaterals and hexahedrons as well as for elements with curved boundaries,
this transformation of the PDE is still possible, but the spatially varying Jacobian matrix of the mapping must
then be taken into account later inside the Cauchy–Kovalewski procedure by applying the product rule.

For the case of a mapping with constant Jacobian matrix, such as (4), we can write a generic nonlinear
hyperbolic system of conservation laws
o

ot
U p þ

o

ox
fp þ

o

oy
gp þ

o

oz
hp ¼ Sp ð20Þ
directly as
o

os
U p þ Dt

o

on
f �p þ

o

og
g�p þ

o

of
h�p

� �
¼ DtSp ð21Þ
with
f � ¼ f nx þ gny þ hnz; g� ¼ f gx þ ggy þ hgz; h� ¼ f fx þ gfy þ hfz: ð22Þ
Sp is a vector of source terms corresponding to some volume force. For the nonlinear Euler equations, the
state vector of the conserved variables Up and the vectors of the nonlinear fluxes fp, gp and hp are:
U p ¼

q

qu

qv

qw

qE

0BBBBBB@

1CCCCCCA f p ¼

qu

qu2 þ p

quv

quw

uðqE þ pÞ

0BBBBBB@

1CCCCCCA gp ¼

qv

qvu

qv2 þ p

qvw

vðqE þ pÞ

0BBBBBB@

1CCCCCCA hp ¼

qw

qwu

qwv

qw2 þ p

wðqE þ pÞ

0BBBBBB@

1CCCCCCA: ð23Þ
The system is closed by the equation of state of an ideal gas,
p ¼ ðc� 1Þ qE � 1

2
qðu2 þ v2 þ w2Þ

� �
: ð24Þ
Here, c = 1.4 is the ratio of specific heats. The two-dimensional case is obtained by setting o
oz ¼ 0 and w = 0.

Although it may initially seem to be extremely cumbersome to do the Cauchy–Kovalewski procedure for
nonlinear three-dimensional hyperbolic systems, there exists a very efficient algorithm at least for some par-
ticular nonlinear systems. It was originally developed by Dyson [22] for the Euler equations and was then
modified by Dumbser and Munz [21,20] and Taube et al. [46] in their work on ADER-DG schemes for the
Euler and MHD equations. However, in the previous references, the algorithm was always applied in physical
coordinates. The method is based on the generalized Leibniz rule, which gives the space–time derivatives of
arbitrary order for a product of multivariate scalar functions f1 and f2:
Lða;b;c;dÞðf1; f2Þ :¼ oaþbþcþdðf1ðn; g; f; sÞf2ðn; g; f; sÞÞ
onaogbofcosd

¼
Xa

i¼0

Xb

j¼0

Xc

k¼0

Xd

l¼0

Pbc �
oða�iÞþðb�jÞþðc�kÞþðd�lÞf1

onða�iÞogðb�jÞofðc�kÞosðd�lÞ
� oiþjþkþlf2

oniogjofkosl

" #
; ð25Þ
with Pbc the product of the binomial coefficients
Pbc ¼
a

i

� �
b

j

� �
c

k

� �
d

l

� �
: ð26Þ
This rule alone is not yet sufficient to treat the nonlinear Euler equations, since there appears for example a
term like (qu)u in the momentum flux, but u and its derivatives are not known a priori, but only those of the
conservative variables q and qu. The key now consists in reformulating the Leibniz rule (25) such as to
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calculate all the space–time derivatives of the auxiliary variable u from the known space–time derivatives of q
and q u and all previously computed space–time derivatives of lower order of the auxiliary variable u. This is
achieved by a modified Leibniz rule of the form
Lða;b;c;dÞ
�� ðf1f2; f1; f2Þ :¼ o

aþbþcþdf2ðn; g; f; sÞ
ona

ogbofc
osd

¼ 1

f1

� oaþbþcþdðf1ðn; g; f; sÞf2ðn; g; f; sÞÞ
onaogbofcosd

�Lða;b;c;dÞ
� ðf1; f2Þ

� �
; ð27Þ
with f1 6¼ 0. The operator Lða;b;c;dÞ
� ðf1; f2Þ only contains lower order derivatives of f2 and is defined as the

original Leibniz rule (25) except of the last term in the sum:
Lða;b;c;dÞ
� ðf1; f2Þ ¼

Xa

i¼0

Xb

j¼0

Xc

k¼0

Xd

l¼0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
iþjþkþl6¼aþbþcþd

Pbc �
oða�iÞþðb�jÞþðc�kÞþðd�lÞf1

onða�iÞogðb�jÞofðc�kÞosðd�lÞ
� oiþjþkþlf2

oniogjofkosl

" #
;

with Lð0;0;0;0Þ
� ðf1; f2Þ :¼ 0: ð28Þ
For a simple illustration of this strategy see [21]. Using the operators (25)–(28) we can now tackle the
Cauchy–Kovalewski procedure for the nonlinear three-dimensional Euler equations written in the reference
element, see Eq. (21). We suppose that all pure spatial derivatives with respect to n, g and f of the con-
servative variables q, qu, qv, qw and qE are already computed in the element barycenter according to Eq.
(19).

Starting from zeroth order spatial and temporal derivatives and successively increasing the spatial and
the temporal derivative order, the Cauchy–Kovalewski procedure can be written in an unrolled recursive
manner. At each time-derivative level, first the primitive variables u, v and w are computed from the vec-
tor of conserved quantities Up using the operator L��. Then, the auxiliary variables qu2, qv2, qw2, quv quw

and qvw are computed using the generalized Leibniz rule L, from the first three of which the pressure p

can be subsequently computed. After applying the operator L to compute u(qE + p), v(qE + p) and
w(qE + p), the spatio-temporal derivatives of the nonlinear fluxes according to (23) can be computed.
Inserting these into the definition (22) finally allows to compute the time-derivatives of successive order
of the conservative variables U using the governing PDE written in the reference element (21). We empha-
size that this algorithm is completely generic and can be run up to any given degree of the reconstruction
polynomials M.

In order to present the whole algorithm more clearly, in Appendix A we list the entire Fortran code of a
subroutine called NonLinearCK_Euler3D, which performs the Cauchy–Kovalewski procedure in our
method for the homogeneous case without source terms. For the incorporation of nonlinear source terms,
for example gravitational volume forces, see [20] for more details. In the case of externally imposed source
terms that depend only on space and time, all mixed space–time derivatives of Sp have to be added in the last
loop, see the comments in Appendix A.

When entering the subroutine, the subarray W(1:5,:,:,:,0) contains as input all purely spatial derivatives
with respect to n, g and f of the conservative variables. The first index of W refers to the variable number as
given in the comments of the code, the second, third and fourth indices refer to the order of the n, g and f
derivatives, respectively, and the last index refers to the derivatives with respect to the reference time s. While
running the algorithm, the array W is filled with all mixed space–time derivatives of the conservative variables
and the introduced auxiliary variables, from which the mixed space–time derivatives of the fluxes are obtained.
The set of fluxes f �p , g�p, h�p is used according to (23) to compute the time derivatives of the next level for Up. The
mixed space–time derivatives of the nonlinear fluxes fp, gp, hp are returned to the calling subroutine in the
arrays FCx, FCy and FCz. All mixed space–time derivatives of the conservative variables are returned in
the subarray W(1:5,:,:,:,:).

As final result of the Cauchy–Kovalewski procedure, we hence obtain the full set of coefficients bU pijkl, f̂ pijkl,
ĝpijkl and ĥpijk of the spatio-temporal Taylor series for the conservative variables and the nonlinear fluxes,
expanded about the current time tn and the element barycenter ~nBC:
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U pð~n; sÞ ¼ bU pijkl � hijklð~n; sÞ; f pð~n; sÞ ¼ f̂ pijkl � hijklð~n; sÞ;
gpð~n; sÞ ¼ ĝpijkl � hijklð~n; sÞ; hpð~n; sÞ ¼ ĥpijkl � hijklð~n; sÞ:

ð29Þ
4. The fully discrete formulation of the quadrature-free ADER-FV scheme

As it is usual for finite volume schemes, the conservation law (20) is integrated over each element T(m) in
space using Gauss’ theorem and in the time interval [tn; tn + Dt],
Z tnþDt

tn

Z
T ðmÞ

o

ot
U p dV dt þ

Z tnþDt

tn

Z
oT ðmÞ

fp gp hp

� �
~ndS dt ¼

Z tnþDt

tn

Z
T ðmÞ

SpdV dt: ð30Þ
It can be easily shown, that the Euler equations are rotationally invariant [48], so the boundary integral term
in (30) can be written in a much simpler form after transformation to an edge-aligned local coordinate system.
The transformation from the original variables Up to the edge-aligned variables U 0p and its inverse are
Up ¼ T pqU 0q; U 0p ¼ T pqUp; ð31Þ
with
T pq ¼

1 0 0 0 0

0 nx sx tx 0

0 ny sy ty 0

0 nz sz tz 0

0 0 0 0 1

0BBBBBB@

1CCCCCCA; ð32Þ
where ~n ¼ ðnx; ny ; nzÞT is the unit normal vector on the surface oT(m) of the element and~s ¼ ðsx; sy ; szÞT and
~t ¼ ðtx; ty ; tzÞT are two unit vectors that are orthogonal to each other and to ~n. Integrating the first term in
(30) in space and time and making use of the rotational invariance of the Euler equations, we get
jT ðmÞjðUpðtnþ1Þ � U pðtnÞÞ ¼
Z tnþDt

tn

Z
T ðmÞ

Spð~n; tÞdV dt � s

�
XNE

e¼1

Z 1

0

Z
oT ðmÞe

T pqf h
p ðU 0ðmÞq ð~n; sÞ;U 0ðkeÞ

q ð~n; sÞ; f 0ðmÞp ð~n; sÞÞ; f 0ðkeÞ
p ð~n; sÞÞdS ds;

ð33Þ
where NE = d + 1 denotes the number of element faces in d space dimensions and |T(m)| the element volume.
For computing the boundary integral in Eq. (33) a numerical flux f h

p depending on the left and right states and
fluxes at the element interface number e between element T(m) and its neighbor T ðkeÞ has been introduced since
1
efinition on triangles and tetrahedrons

Points
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2 3
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1 4 3
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the reconstructed solution usually may jump across the element interfaces. We use the following numerical flux
at the element interfaces:
Table
2D an

e

n(j)(v1,
g(j)(v1,
f(j)(v1,
f h
p ðU 0ðmÞq ð~n; sÞ;U 0ðkeÞ

q ð~n; sÞ; f 0ðmÞp ð~n; sÞÞ; f 0ðkeÞ
p ð~n; sÞÞ

¼ f 0
p ðU 0ðmÞq ð�b;�sÞ;U 0ðkeÞ

q ð�b;�sÞÞ � f c
p ðU 0ðmÞq ð�b;�sÞ;U 0ðkeÞ

q ð�b;�sÞ; f 0ðmÞp ð�b;�sÞÞ; f 0ðkeÞ
p ð�b;�sÞÞ

þ f c
p ðU 0ðmÞq ð~n; sÞ;U 0ðkeÞ

q ð~n; sÞ; f 0ðmÞp ð~n; sÞÞ; f 0ðkeÞ
p ð~n; sÞÞ; ð34Þ
where a Roe-type corrector flux f c;Roe
p is defined as
f c;Roe
p ðU 0ðmÞq ð~n; sÞ;U 0ðkeÞ

q ð~n; sÞ; f 0ðmÞp ð~n; sÞÞ; f 0ðkeÞ
p ð~n; sÞÞ

¼ 1

2
ðf 0ðmÞp ð~n; sÞ þ f 0ðkeÞ

p ð~n; sÞÞ � 1

2
jeApqjðU 0ðkeÞ

q ð~n; sÞ � U 0ðmÞq ð~n; sÞÞ: ð35Þ
Here, �s ¼ 1
2

is the time step barycenter and �b ¼ ð�n; �g;�fÞ ¼~nð�v1; �v2Þ is the spatial barycenter of the element
interface, parametrized by the local face parameters �v1 ¼ 1

2
in 2D and ð�v1; �v2Þ ¼ ð13 ; 1

3
Þ in 3D, see Table 2 for

the computation of the volume coordinates ~n in function of the local face parameters v1 and v2. Note that
the space–time dependent corrector flux in (34) is a linear function of its four arguments, the last two of which
are the left and right physical fluxes in normal direction f 0ðmÞq as obtained from the result (29) of the Cauchy–
Kovalewski procedure:
f 0ðmÞp ð~n; tÞ ¼ f̂ 0ðmÞpijkl � hijklð~n; sÞ; ð36Þ
with
f̂ 0ðmÞpijkl ¼ nxf̂
ðmÞ
pijkl þ nyĝðmÞpijkl þ nzĥ

ðmÞ
pijkl: ð37Þ
The term jeApqj in the corrector flux denotes the absolute value of the Roe matrix [39] of the boundary extrap-
olated left and right states evaluated at the space–time barycenter of the element interface. Here, the absolute
value operator of a matrix Mpq is defined by applying the absolute value operator componentwise on the diag-
onal matrix of eigenvalues Kpq, i.e. jMpqj ¼ RprjKrsjR�1

sq , where Rpr is the matrix of the right eigenvectors. For
explicit expressions of the Roe flux see e.g. [48].

The numerical flux depends on both space and time, since we have to integrate over the element face in
space and time. The first term f 0

p on the right hand side of (34) is the numerical flux of leading order, evaluated
at the space–time barycenter of the face. Here, any Riemann solver can be used. For an overview of Riemann
solvers see for example [48]. The second term in (34) corresponds to the Roe flux at the space–time barycenter
of the interface, where the leading order flux is evaluated. This term is necessary for consistency. The last term
corresponds to the Roe flux, where the Roe matrix is, however, kept constant on the whole face and does not
depend on space and time. It is evaluated once at the left and right state entering the leading order flux and
then its value is ‘frozen’. This is very important since otherwise, the flux could not be integrated analytically in
space and time. Thus, the whole numerical flux can be interpreted as the sum of a leading flux f 0

p and a Roe-
type space–time dependent corrector flux. Due to its evaluation in the space–time barycenter, which corre-
sponds to the Gaussian integration point for finite volume schemes up to second order of accuracy, the leading
flux is up to second order accurate in space and time, whereas the Roe-type correction vanishes for first and
second order finite volume schemes where the method reduces to the MUSCL scheme [55,56]. The correction
intervenes only for schemes of order higher than two, where one spatio-temporal Gaussian integration point
would no longer be enough to provide a formally accurate scheme.
2
d 3D volume coordinates ~nðeÞ as function of the face parameters v1 and v2

Triangles (2D) Tetrahedrons (3D)

1 2 3 1 2 3 4

v2) v1 1 � v1 0 v2 v1 0 1 � v1 � v2

v2) 0 v1 1 � v1 v1 0 v2 v1

v2) 0 v2 v1 v2



Table 3
Transformation of the face parameters v1 and v2 of the tetrahedron’s face to the face parameters ~v1 and ~v2 in the neighbor tetrahedron
according to the three possible orientations (h) of the neighbor face

h 1 2 3

~vðhÞ1 ðv1; v2Þ v2 1 � v1 � v2 v1

~vðhÞ2 ðv1; v2Þ v1 v2 1 � v1 � v2
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Since the computation of the absolute value of the Roe matrix is quite expensive and because the Roe flux
without modification is not an entropy flux, a more robust and faster corrector flux of the HLL-type f c;HLL

p can
be defined as follows:
f c;HLL
p ðU 0ðmÞq ð~n; sÞ;U 0ðkeÞ

q ð~n; sÞ; f 0ðmÞp ð~n; sÞÞ; f 0ðkeÞ
p ð~n; sÞÞ

¼ 1

sR � sL

½sRf 0ðmÞp ð~n; sÞ � sLf 0ðkeÞ
p ð~n; sÞ þ sLsRðU 0ðkeÞ

q ð~n; sÞ � U 0ðmÞq ð~n; sÞÞ�: ð38Þ
Here, the estimates of the signal velocities sL and sR are given as follows:
sR ¼ maxð0; u0R þ cR; ~u0 þ ~cÞ; sL ¼ minð0; u0L � cL; ~u0 � ~cÞ: ð39Þ

As for the Roe matrix, the velocities in Eq. (39) are only evaluated once at the space–time barycenter of the
element interface and are then kept constant for the whole interface. This approach is very similar to the Tay-
lor quadrature developed in [53] for second order accurate space–time DG methods.

Due to the linearity of the space–time dependent corrector flux in its arguments and the availability of their
Taylor series expansion in space and time, we can integrate the numerical flux analytically in space and time
over the space–time reference element interface. We can furthermore apply the integration first to the argu-
ments and then compute the corrector flux with the space–time integrated arguments
Z 1

0

Z
oT ðmÞe

ðU 0ðmÞp ð~n; sÞ � U 0ðmÞp ð�b;�sÞÞdS ds ¼ cU 0 ðmÞpijklF
�;e
ijkl;Z 1

0

Z
oT ðmÞe

ðU 0ðkeÞ
p ð~n; sÞ � U 0ðkeÞ

p ð�b;�sÞÞdS ds ¼ cU 0 ðkeÞ
pijklF

þ;eþ;hþ
ijkl ;Z 1

0

Z
oT ðmÞe

ðf 0ðmÞp ð~n; sÞ � f 0ðmÞp ð�b;�sÞÞdS ds ¼ bf 0 ðmÞpijklF
�;e
ijkl;Z 1

0

Z
oT ðmÞe

ðf 0ðkeÞ
p ð~n; tÞ � f 0ðkeÞ

p ð�b;�sÞÞdS ds ¼ bf 0 ðkeÞ
pijklF

þ;eþ;hþ
ijkl ;

ð40Þ
using the following mesh-independent flux matrices, which can be precomputed once and then stored:
F �;eijkl ¼
Z 1

0

Z
oðT EÞe
ðhijklð~nðeÞðv1; v2Þ; sÞ � hijklð~nð�v1; �v2Þ;�sÞÞdv1 dv2 ds; ð41Þ

F þ;e
þ ;h

ijkl ¼
Z 1

0

Z
oðT EÞe
ðhijklð~nðe

þÞð~vðhÞ1 ; ~vðhÞ2 Þ; sÞ � hijklð~nðe
þÞð�v1; �v2Þ;�sÞÞdv1 dv2 ds: ð42Þ
Here, e and e+ are the local numbers of the considered common element interface between elements T(m) and
T ðkeÞ as seen from each element, respectively, and h takes into account the possibly different orientations of two
tetrahedral faces due to rotation (see Table 3) and has a meaning only in the three-dimensional case. The
element faces, as defined in Table 1, are parametrized by the face parameters v1 and v2, which are mapped
to the volume coordinates ~n by a mapping function depending on the face number and the orientation.
For more details on the computation of the flux matrices in 2D and 3D, see [17].
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The final fully discrete form of the quadrature-free finite volume scheme reads as follows:
jT ðmÞjðU pðtnþ1Þ � UpðtnÞÞ ¼ DtjJ j
Z 1

0

Z
T E

Spð~n; sÞdV ds�
XNE

e¼1

DtjoT ðmÞe jT pq � f 0
p ðU 0ðmÞq ð�b;�sÞ;U 0ðkeÞ

q ð�b;�sÞÞ

�
XNE

e¼1

DtjSejT pqf c
q ðcU 0 ðmÞrijklF

�;e
ijkl;
cU 0 ðkeÞ

rijklF
þ;eþ;hþ
ijkl ; bf 0 ðmÞrijklF

�;e
ijkl;

bf 0 ðkeÞ
rijklF

þ;eþ;hþ
ijkl Þ: ð43Þ
The symbols |Se| are the Jacobi determinants of the faces which are equal to the edge length joT ðmÞe j in 2D and
equal to half of the triangular face surface joT ðmÞe j in 3D. We emphasize that the proposed quadrature-free
finite volume scheme only needs one leading flux evaluation per element face and time step, independent of
the chosen order of accuracy. For schemes of order greater than two, just one additional corrector flux eval-
uation is necessary per element face and time step.

In the following, we would like to summarize the necessary steps of the whole algorithm described in this
section to perform the update of the cell averages from time tn to time tn + Dt:

(1) Apply the characteristic WENO reconstruction algorithm described in Section 2 to the mean values U p

in order to obtain the high order non-oscillatory reconstruction polynomials wpð~nÞðmÞ as defined in (3).
(2) Perform the change of basis algorithm (19) in order to compute the spatial derivatives of the conservative

variables at time tn in the spatial barycenter of each space–time reference element.
(3) Insert the barycentric spatial derivatives of Up obtained in step 2 into the Cauchy–Kovalewski procedure

as shown in detail in the program listing given in Appendix A. This yields as a result the coefficients of
the space–time Taylor series in the space–time reference element TE for the state Up and the nonlinear
physical fluxes fp, gp and hp.

(4) Rotate the coefficients of the Taylor series for the state and the physical fluxes in the edge-aligned coor-
dinate system according to (31) and (36).

(5) Compute the leading fluxes f 0
p and the Roe matrix eApq or the signal velocities sL and sR at the space–time

barycenter ð�b;�sÞ and assume them to be constant on the face. Multiply the degrees of freedom of the
spatio-temporal Taylor series obtained in step 4 for the element and its neighbors with the corresponding
flux matrices and compute the corrector flux f c

p according to (35) or (38).
(6) If necessary, compute the space–time integral of externally imposed source terms using Gaussian

quadrature.
(7) Update the cell averages according to (43).

Note that the computation of the corrector fluxes is only needed for finite volume schemes of order of accu-
racy higher than two. Since our method can achieve theoretically any order of accuracy in space and time, we
will refer to it as quadrature-free ADER finite volume (QF ADER-FV) scheme, since it fully exploits all the
derivative information obtained from the reconstruction.
5. On the implementation of boundary conditions and MPI parallelization

There is a variety of physically meaningful boundary conditions for the compressible Euler equations. How-
ever, the four most important types are: periodic boundary conditions, reflective (solid slip-wall) boundary
conditions, inflow boundaries and transmissive boundaries. An important point in the context of finite volume
schemes is the generation of appropriate reconstruction stencils at the boundary of the computational domain,
except for periodic boundary conditions. Throughout this article, except for periodic boundary conditions, we
choose generally one-sided stencils, i.e. stencils that lie completely inside the computational domain. Without
changing the stencil search algorithm described in [17], the stencils at the boundary are simply generated by add-
ing to the stencil recursively the available direct neighbors of the elements already in the stencil until the required
number of elements ne is reached, starting always with the central element for which reconstruction is to be
performed. This automatically leads to one-sided stencils at the boundary of X.
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For the flux computation at the boundary, we then solve so-called inverse Riemann problems. This means
that at a boundary interface we have to prescribe some data outside the computational domain as argument
for the numerical flux to obtain the correct numerical flux at the interface. In other words, we must find the
initial condition for the corresponding Riemann problem at the boundary such that its solution at the interface
yields the physically required condition. For inflow boundaries, all values for density, velocity and pressure at
the boundary oX are prescribed. The Riemann solver then automatically chooses the correct interface values
due to upwinding. For transmissive boundaries, the unknown data outside the domain (outer data) is simply
chosen to be equal to the reconstructed data inside the computational domain (inner data). Finally, for solid
slip-wall boundary conditions we mirror the normal velocity component i.e. we change the sign of the normal
velocity for the outer data. Then we copy all other velocity components as well as density and pressure from
the inner data. This procedure assures the resulting Riemann problem at the boundary to be symmetric and to
yield exactly a zero normal velocity at the boundary. The correct pressure on the wall boundary will then be
automatically computed by the numerical flux. The performance of one-sided reconstruction together with the
solution of inverse Riemann problems at reflecting walls has been studied for linear hyperbolic systems in
detail for ADER finite volume schemes in [16], where the method has been validated using analytic reference
solutions and where it has been also compared with standard and staggered-grid finite difference methods. We
note that the solution of inverse Riemann problems is not equivalent to the method of ghost-points that is
commonly used to impose boundary conditions for high-order finite difference schemes.

For curved boundaries, high order boundary representation must be used in order to achieve the desired
order of accuracy, see [4,37]. At curved walls, we drop the quadrature-free approach and use classical multi-
dimensional Gaussian quadrature formulae in space and time [44] to compute the flux integrals. Since this is
only done on the boundaries, it does not lead to a significant increase in CPU time.

At this point we also would like to make some remarks on the MPI parallelization of ADER finite volume
schemes on modern massively parallel systems using the MPI standard. Since the ADER-FV method leads to
an explicit one-step scheme in time, the total communication overhead is considerably low compared to meth-
ods using high order Runge–Kutta time integration because data has to be exchanged only at the beginning of
each time step. Then, each sub domain can evolve the solution independently of its neighbor domains.
Unstructured mesh partitioning is done with the free METIS software package described in [32]. For our par-
allel implementation, we decided to split the MPI communications for ADER-FV into two parts. Before
reconstruction can be done, the finite volume scheme must first exchange the necessary cell averages U p

required for the reconstruction procedure and subsequently each sub-domain can perform the reconstruction.
In a second step, the reconstructed degrees of freedom ŵpl are exchanged only between the direct neighbors of
Number of CPUs
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Fig. 2. MPI speedup measured on the HLRB2 supercomputer in München, Germany, using the fourth order ADER-FV scheme on an
unstructured tetrahedral mesh in 3D. The solid line shows the wallclock time needed for a fixed problem on 2, 4, 8, 16, 32, 64 and 128
CPUs, respectively. The dashed line shows the theoretical optimum for comparison, supposing 100% MPI efficiency.
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a sub-domain boundary. To assess the parallel efficiency, we run a fixed three-dimensional problem using the
fourth order quadrature-free ADER finite volume scheme on an unstructured tetrahedral mesh with 69,120
elements. The problem is the same as used for the three-dimensional convergence studies presented in Section
6.2, corresponding to the NG = 24, M = 3 case shown in Table 6. In Fig. 2 we show that our code scales quite
well up to 128 CPUs. We emphasize that we used a very simple MPI implementation that does not use any
special technique to hide MPI latency times.

Typical runs of our parallel ADER-FV code on the HLRB2 supercomputer of the Leibniz Rechenzentrum

(LRZ) in München, Germany, use between 64 and 128 CPUs. For our largest computation, shown in Section
7.10 of this article, we used 1024 CPUs obtaining a parallel efficiency of about 40%.
6. Numerical convergence studies

6.1. Convergence studies in two dimensions

We consider the smooth two-dimensional example of a convected isentropic vortex given for example by
Hu and Shu in [30]. The governing equations are the nonlinear two-dimensional Euler equations (23) with
the equation of state (24) and without source term. The initial condition is a linear superposition of a homo-
geneous background field and some perturbations d:
ðq; u; v; pÞ ¼ ð1þ dq; 1þ du; 1þ dv; 1þ dpÞ: ð44Þ

The perturbations of the velocity components u and v as well as the perturbations of entropy S ¼ p

qc and
temperature T of the vortex are given by
du

dv

� �
¼ �

2p
e

1�r2

2
�ðy � 5Þ
ðx� 5Þ

� �
; dS ¼ 0; dT ¼ �ðc� 1Þ�2

8cp2
e1�r2

; ð45Þ
with r2 = (x � 5)2 + (y � 5)2 and the vortex strength � = 5. If we define the relationship between density, pres-
sure and static temperature in a nondimensional fashion so that the gas constant becomes equal to unity, we
obtain the following perturbations of the primitive variables density and pressure:
dq ¼ ð1þ dT Þ
1

c�1 � 1; dp ¼ ð1þ dT Þ
c

c�1 � 1: ð46Þ

The computational domain is X = [0;10] · [0;10] and four periodic boundary conditions are imposed. After
one period of t = 10, the exact solution is given by the initial condition (44). For measuring the error between
the numerical solution uh and the exact solution ue, we first apply the reconstruction operator in order to get
wh from uh and then we use the continuous Lp-norms
kwh � uekLpðXÞ ¼
1

jXj

Z
X
jwh � uejpdV

� �1
p

; ð47Þ
in which the integration has been approximated using Gaussian integration formulae with twice the order of
accuracy of the numerical scheme. The area of the computational domain is |X| = 100. The L1 norm has been
approximated by taking the maximum error arising in any of the Gaussian integration points without division
by |X|.

The numerical convergence rates for the nonlinear ADER-FV schemes up to sixth order of accuracy are
given in Table 4. The errors presented are those for the density q. Similar results are obtained for the other
primitive flow quantities u, v and p. The CPU time given in the tables is the one obtained with the serial version
of the code on one processor of an Intel Xeon dual-processor workstation with 2 · 3.6 GHz and 4 GB of
RAM. Computations have been performed on a sequence of red-refined triangular grids, see Fig. 3. The left-
most grid in Fig. 3 is defined to be the reference grid with the characteristic mesh length h = h0. We note that
our triangular grids are very similar to the irregular grids used by Hu and Shu [30] and hence the results are
comparable. For convenience, the results presented in [30] are repeated in Table 5. However, we emphasize
that we compute the solution up to t = 10, which is five times the output time used in [30], where the error
norms are computed already at t = 2.0. We note that on finer grids the numerical errors obtained with the



Table 4
Numerical convergence results obtained with ADER-FV schemes from third to sixth order in space and time for the two-dimensional
vortex test case at t = 10.0

h0

h L1 L1 L2 OL1 OL1 OL2 tCPU (s)

ADER-FV O3 (M = 2)

2 4.1966E�01 2.5803E�02 5.5744E�03 1
4 2.0603E�01 1.0377E�02 2.5127E�03 1.0 1.3 1.1 9
8 3.9381E�02 2.0124E�03 4.7131E�04 2.4 2.4 2.4 72
16 6.4677E�03 3.8149E�04 8.4719E�05 2.6 2.4 2.5 583
32 8.8072E�04 5.2530E�05 1.1666E�05 2.9 2.9 2.9 4607

ADER-FV O4 (M = 3)

2 3.7427E�01 2.0632E�02 4.7927E�03 2
4 5.2403E�02 4.1394E�03 7.4081E�04 2.8 2.3 2.7 14
8 1.0180E�02 4.5537E�04 8.6607E�05 2.4 3.2 3.1 114
16 3.6210E�04 2.5185E�05 4.5212E�06 4.8 4.2 4.3 910
32 1.6601E�05 1.0891E�06 1.8424E�07 4.4 4.5 4.6 7188

ADER-FV O5 (M = 4)

2 3.4130E�01 1.8162E�02 4.2424E�03 3
4 4.3610E�02 2.8756E�03 5.4369E�04 3.0 2.7 3.0 21
8 8.4151E�03 3.6375E�04 7.6764E�05 2.4 3.0 2.8 172
16 2.9109E�04 1.6616E�05 3.6625E�06 4.9 4.5 4.4 1364
32 1.0793E�05 5.7088E�07 1.3018E�07 4.8 4.9 4.8 11,010

ADER-FV O6 (M = 5)

2 2.1257E�01 1.9073E�02 2.9774E�03 3
4 3.7012E�02 2.2336E�03 3.6602E�04 2.5 3.1 3.0 32
8 1.2839E�03 9.6264E�05 1.7198E�05 4.8 4.5 4.4 261
16 3.4407E�05 1.6378E�06 3.5529E�07 5.2 5.9 5.6 2122
32 5.3451E�07 2.7486E�08 4.7517E�09 6.0 5.9 6.2 16,975
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Fig. 3. Sequence of red-refined triangular meshes used for the two-dimensional convergence studies.
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third order ADER-FV scheme are lower than the third order Runge–Kutta WENO finite volume scheme,
despite the much longer simulation time. The fourth order ADER-FV scheme still reaches lower error norms
after t = 10 than the WENO scheme of Hu and Shu after t = 2. However, we stress that in [30] only a third
order TVD Runge–Kutta time stepping method has been used so that the time step was reduced proportional
to h4/3 in order to get fourth order of accuracy, whereas we run the ADER-FV scheme with a fixed Courant
number of 0.5 and a time step proportional to h. The desired convergence rates at fixed Courant number are
still reached for the fifth and sixth order ADER-FV schemes, see Table 4. To our knowledge, this very high
order of accuracy has not yet been reached with any other finite volume scheme for the compressible Euler
equations on unstructured meshes.



Table 5
Numerical convergence results given by Hu and Shu in [30] for third and fourth order WENO finite volume schemes for the two-
dimensional vortex test case at t = 2.0

TVD Runge–Kutta WENO O3 [30] TVD Runge–Kutta WENO O4 [30]

h0

h L1 L1 OL1 OL1 L1 L1 OL1 OL1

2 3.33E�001 2.1200E�02 2.1400E�01 1.8400E�02
4 2.27E�001 1.2800E�02 0.6 0.7 3.4300E�02 2.8000E�03 2.6 2.7
8 6.85E�002 3.8400E�03 1.7 1.7 6.5700E�03 2.1200E�04 3.7 3.7

16 3.02E�002 8.3200E�04 2.2 2.2 5.9100E�04 1.0900E�05 4.3 4.3
32 5.64E�003 1.2600E�04 2.7 2.7 1.9700E�05 3.7600E�07 4.9 4.9
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6.1.1. Computational cost evaluation

To give the reader a possibility to assess the computational effort associated with the presented ADER-FV
methods for the two dimensional compressible Euler equations in a fully unstructured framework in compar-
ison to ADER-FV schemes on Cartesian meshes [47] and in comparison to the classical WENO finite differ-
ence schemes [31], we present the following quantitative cost comparison: all CPU times have been obtained
for the two-dimensional compressible Euler equations using the same compiler on the same Intel Xeon work-
station using one single CPU with 3.6 GHz and 4 GB of RAM. The given CPU times are defined as the total
time needed for a complete time step of a single element, including reconstruction, flux computation and time
integration for all variables of the Euler equations. We measured the total CPU time necessary per element
update to be 45 ls for the Cartesian third order ADER-FV code of Titarev and Toro [47] and 75 ls for
the unstructured third order ADER-FV schemes presented in this paper. Furthermore, the fourth order Carte-
sian ADER-FV approach requires 112 ls whereas the fourth order unstructured ADER-FV method presented
in this paper needs 120 ls per element update. The classical fifth order WENO finite difference method [31]
using third order TVD Runge–Kutta time discretization needed 15 ls per element update on a Cartesian grid.
The increasing efficiency of the higher order unstructured ADER-FV algorithm presented in this article com-
pared to the Cartesian ADER-FV method could be due to a more efficient implementation of the Cauchy–
Kovalewski procedure as well as the quadrature-free implementation. However, we note that for such complex
algorithms, many other implementation details must also be taken into consideration. When comparing struc-
tured and unstructured approaches it is important to mention that to mesh the same computational domain
with either triangles or quadrilaterals of equal maximal edge length, one needs about two times more triangles
than quadrilaterals and simultaneously one must accept also a more restrictive explicit time step restriction
since the incircle diameter, which is used as a characteristic length scale for the CFL criterion, can be about
a factor of two smaller in irregular triangles compared to regular rectangles of equal maximal edge length.

6.2. Convergence studies in three dimensions

In order to study the convergence behaviour of our method for the three dimensional compressible Euler
equations we create a smooth unsteady test case with exact reference solution by prescribing a vector Upð~x; tÞ
which when substituted into (20) produces a modified Euler system with a source term. Note that for the test
to be useful the method must be also capable of computing solutions to inhomogeneous problems, that is with
a non-vanishing right-hand side, to the required order of accuracy.

Therefore, we now solve the three-dimensional Euler equations with source terms, as given by (20)–(23), in
the domain X3D = [�0.5;0.5]3 with six periodic boundary conditions and the following space–time dependent
source term:
S1

S2

S3

S4

S5

0BBBBBB@

1CCCCCCAð~x; tÞ ¼
xA0 sinðxt �~k~xÞ
�kxA0 sinðxt �~k~xÞ
�kyA0 sinðxt �~k~xÞ
�kzA0 sinðxt �~k~xÞ
1

c�1
xA0 sinðxt �~k~xÞ

0BBBBBBB@

1CCCCCCCA: ð48Þ
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The exact solution to the problem, serving also as initial condition, is
Table
Numer
case af

NG

ADER

8
12
16
20
24
32

ADER

8
12
16
20
24
32

ADER

4
8

12
16
20
24

ADER

4
8

12
16
20
24
q
~V

p

0B@
1CAð~x; tÞ ¼ 2þ A0 sinðxt �~k~xÞ

~0

2þ A0 sinðxt �~k~xÞ

0B@
1CA; ð49Þ
inserting (49) and (48) into (23). We note that the solution is simple in structure but non-trivial. In particular,
during a numerical simulation the velocity components will show values different from zero due to numerical
errors since numerical schemes will in general not be able to balance exactly the nonlinear convective flux with
the source term. Therefore, this example is also a very useful validation of the capability of our method to
balance the source term with the fluxes. The constants are set to be A0 = 1.0 and ~k ¼ ðkx; ky ; kzÞ with
kx = ky = kz = x = 2p. The convergence rates for our proposed quadrature-free ADER finite volume schemes
from third to sixth order of accuracy in space and time are presented in Table 6 for the velocity in x-direction,
i.e. for the primitive variable u. Similar results are obtained for all the other variables. The error norms are
computed in the same way as for the two dimensional convergence studies. We use the characteristic WENO
reconstruction with the following parameters: r = 4, k1 = 105 and � = 10�14. For the convergence studies, the
exact Riemann solver is used for the leading flux, together with the Roe-type corrector. The CPU times that
are given in Table 6 are for the parallel version of the code running on four Intel Itanium Madison CPUs (each
with 1.6 GHz clock speed and 8 GB of RAM) of the HLRB2 supercomputer at LRZ München. The numerical
convergence study on unstructured three dimensional tetrahedral meshes has the twofold purpose of verifying
6
ical convergence results obtained with ADER-FV schemes from third to sixth order in space and time for the three-dimensional test
ter t = 0.25

L1 L1 L2 OL1 OL1 OL2 tCPU (s)

-FV O3 (M = 2)

2.3265E�02 8.7869E�03 1.0185E�02 4
8.0369E�03 2.4689E�03 2.9695E�03 2.6 3.1 3.0 17
3.5522E�03 1.0640E�03 1.2935E�03 2.8 2.9 2.9 54
1.7930E�03 5.4621E�04 6.6247E�04 3.1 3.0 3.0 130
9.9836E�04 3.1449E�04 3.8055E�04 3.2 3.0 3.0 260
4.1918E�04 1.3316E�04 1.6143E�04 3.0 3.0 3.0 820

-FV O4 (M = 3)

6.0763E�03 1.5265E�03 1.9928E�03 8
1.2779E�03 2.8327E�04 3.8575E�04 3.8 4.2 4.0 33
4.1355E�04 8.6796E�05 1.1926E�04 3.9 4.1 4.1 109
1.7613E�04 3.5111E�05 4.8176E�05 3.8 4.1 4.1 262
8.8666E�05 1.6933E�05 2.3075E�05 3.8 4.0 4.0 524
2.9091E�05 5.3556E�06 7.2376E�06 3.9 4.0 4.0 1681

-FV O5 (M = 4)

8.2030E�02 2.9604E�02 3.6341E�02 1
3.4650E�03 1.4997E�03 1.7384E�03 4.6 4.3 4.4 13
5.9061E�04 1.9677E�04 2.3619E�04 4.4 5.0 4.9 71
1.4233E�04 4.6959E�05 5.6289E�05 4.9 5.0 5.0 231
4.4338E�05 1.5301E�05 1.8369E�05 5.2 5.0 5.0 558
2.0926E�05 6.1352E�06 7.4011E�06 4.1 5.0 5.0 1137

-FV O6 (M = 5)

3.1815E�02 1.1310E�02 1.3915E�02 1
1.3728E�03 1.4197E�04 1.7917E�04 4.5 6.3 6.3 20
2.1289E�04 1.0618E�05 1.6858E�05 4.6 6.4 5.8 143
3.1281E�05 1.6605E�06 2.3375E�06 6.7 6.4 6.9 467
7.4469E�06 4.1553E�07 6.1345E�07 6.4 6.2 6.0 1153
2.2733E�06 1.3416E�07 1.9236E�07 6.5 6.2 6.4 2304
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the designed order of accuracy of the quadrature-free unstructured ADER finite volume schemes proposed in
this paper, as well as to validate the MPI parallelization of our code. From our results we may conclude that
the method converges with the designed order of accuracy and that for very high levels of accuracy the higher
order methods are more efficient than the lower order schemes. On the finest mesh we almost reach machine
precision for single precision computations which indicates that our very high order schemes are capable of
maintaining an excellent balance of the source term and the nonlinear convection terms. The good balancing
properties come out automatically from the high order framework and the Cauchy–Kovalewski procedure,
through which the numerical flux takes into account the presence of the source term.
7. Applications in two and three space dimensions

The governing equations solved for all the following numerical examples are the nonlinear Euler equations
of compressible gasdynamics, see (20)–(23).

7.1. Subsonic flow past a circular cylinder in two dimensions

We first compute the subsonic steady-state flow past a circular cylinder with radius R = 1 in two space
dimensions. The computational domain is chosen to be X = [�10;10] · [�10;10], where the circular cylinder
has been cut out. The inflow condition is given by the Mach number M1 = 0.1, the density q1 = 1 and
the pressure p1 = 1/c with c = 1.4. The incoming flow is parallel to the x-axis. In this subsonic flow regime
the potential flow approximation is valid and therefore serves as an excellent reference solution. The radial
and tangential velocity components vr and vh as well as the pressure field p and the pressure coefficient cp

of the potential flow are given analytically by
vr ¼ M1

ffiffiffiffiffiffiffiffi
cp1
q1

r
1� R2

r2

� �
cos h; vh ¼ �M1

ffiffiffiffiffiffiffiffi
cp1
q1

r
1þ R2

r2

� �
sin h; ð50Þ

pðr; hÞ ¼ p1 1þ 1

2
cM2

1

� �
� 1

2
½v2

r þ v2
h�; cp ¼

p � p1
1
2
cp1M2

1
: ð51Þ
The computation is carried out on an irregular unstructured triangular mesh where the cylinder surface is
discretized using 60 elements. The total number of triangles is 6576. We choose an ADER-FV scheme using
WENO reconstruction of polynomial degree M = 3. The curved cylinder wall is intentionally represented by
piecewise linear segments in this case to compare the behaviour of our approach with other methods. For the
initial condition we take the constant inflow everywhere in the domain. The computation was performed up to
the final time of t = 200, where the residuals have decreased sufficiently after 6500 iterations. The triangular
mesh together with the cp distribution of our numerical results as well as a quantitative comparison with the
potential flow model is depicted in Fig. 5, where the pressure coefficient cp has been plotted over the azimuthal
angle h on three concentric circles with radii r = 1, r = 2 and r = 3. We note that the potential flow is symmet-
ric with respect to the coordinate axes and has two stagnation points. Our numerical simulation respects this
symmetry quite well and the cp distribution is in good agreement with the reference solution. We remark that
high order discontinuous Galerkin and spectral finite volume schemes may have severe problems with this test
case on unstructured meshes when no curvilinear boundary representation is used, see [5,20,57]. In these ref-
erences, unphysical and unsteady vortex shedding behind the cylinder was reported using high order schemes
combined with piecewise linear boundaries. In contrast, high order finite volume schemes seem to be less sen-
sitive to this problem.
7.2. Ringleb flow

The flow problem considered in this section is the transonic Ringleb flow [8], which is one of the few ana-
lytical solutions known for the steady compressible two-dimensional Euler equations. It is computed in the
hodograph (V–h) plane, where V is the velocity magnitude and h is the angle of the flow with respect to
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the x-axis. The stream function W of the Ringleb flow is given in the hodograph plane by the simple expression
W = sinh/V, which results in the following analytical expressions for the streamlines in the physical x–y plane:
x ¼ 1

2

1

q
1

V 2
� 2

k2

� �
þ J

2
; y ¼ � 1

kqV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V 2

k2

� �s
; ð52Þ
with the definitions
J ¼ 1

a
þ 1

3a3
þ 1

5a5
� 1

2
ln

1þ a
1� a

; ð53Þ

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c� 1

2
V 2

r
; q ¼ a

2
c�1; k ¼ 1

W
: ð54Þ
It is easy to check that the isotach lines are circles and verify the condition
x� J
2

� �2

þ y2 ¼ 1

4q2V 4
: ð55Þ
The geometry of the problem is chosen identical to the one proposed in [57]. It is defined by two solid walls
that are obtained from two streamlines according to (52) setting c = 1.4, k1 = 0.7 and k2 = 1.2. The inflow and
outflow boundary conditions, where the exact solution of the Ringleb flow is imposed, are given by the
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corresponding segments of the isotach line for V = 0.5. The computation is performed on a sequence of suc-
cessively refined irregular triangular meshes, see Fig. 6, with the same resolution as three of the regular trian-
gular grids used in [57]. Since the flow is completely smooth in the whole computational domain and since the
analytic solution is exact, we provide also a quantitative validation of our schemes showing the error norms
obtained for all flow quantities using ADER-FV schemes with nonlinear WENO reconstruction of polynomial
degree M = 3 in characteristic variables, choosing ne = 1.25L, � = 10�14, r = 2 and k1 = 105. The Godunov
flux together with the Roe-type corrector is used. The exact solution serves as initial condition for this prob-
lem. Two computations are performed: one with piecewise linear boundary representation and one with piece-
wise cubic boundaries. Concerning practical implementation, we give up the quadrature-free approach on
those boundaries which are curvilinear, using classical Gaussian quadrature formulae in space and time to
evaluate the flux integrals, see [4,37]. Data at the boundaries are given by the Cauchy–Kovalewski procedure.
The proposed quadrature-free approach is still used on all interior edges so that the curved walls doe not lead
to a significant increase of computational effort.

For the piecewise linear boundary we cannot expect convergence rates to be better than second order,
which is also directly confirmed by the first part of the convergence results given in Table 7. However, we
would like to make the following two remarks: first, complex solid boundaries arising in realistic applications
are not always smooth, but may also be rough, which means that coarse elements on the boundaries with high
order polynomial mapping may not be an ideal choice. Second, it is very important to note that our method is
at least able to maintain the converged steady state solution of this difficult test case perfectly well, even with
piecewise linear boundary approximation, see Fig. 7. In contrast, for example the high order spectral finite
volume method fails for this test case if no high order curvilinear boundary discretization is used and may even
fail for high order boundaries on coarse meshes, see [57]. All our computations have been carried out over a
long period of 104 time steps to be able to detect any divergent behaviour of the numerical solution. For the
coarsest mesh, which is the most critical one concerning the preservation of the steady state, the converged
numerical solution remained perfectly steady even after 105 time steps. For comparison, the simulations pre-
sented in [57] were carried out over 8000 time steps and it was reported that the divergence on the coarsest
mesh started already after about 2000 time steps.

To reach the full formal order of accuracy, also the boundaries of the computational domain must be rep-
resented with higher order polynomial approximations, consistent with the order of accuracy of the scheme
inside the computational domain, see [4,37]. This is clearly confirmed by the second part of Table 7, showing
that with piecewise cubic boundary representation the errors on the intermediate mesh are already much lower
than on the finest mesh with piecewise linear boundaries. However, we remark again that boundaries of real-
istic applications may not always be as smooth as the ones used here in this test case.
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Fig. 6. Mesh sequence used for the Ringleb flow computations.



Table 7
L1 error norms obtained for the Ringleb flow after 10,000 time steps with ADER-FV schemes using nonlinear WENO reconstruction of
degree M = 3

Mesh L1q L1u L1p OL1q OL1u OL1p tCPU (s)

ADER-FV O4 with piecewise linear boundary representation

32 4.3665E�02 2.7818E�02 3.7890E�02 320
64 2.3555E�02 1.8446E�02 1.9808E�02 0.9 0.6 0.9 1307
128 5.9116E�03 5.1699E�03 4.9947E�03 2.0 1.8 2.0 5169

ADER-FV O4 with piecewise cubic boundary representation

32 9.1449E�03 5.9152E�03 7.0783E�03 381
64 6.0674E�04 1.0172E�03 4.5640E�04 3.9 2.5 4.0 1420
128 3.2573E�05 7.0938E�05 1.4825E�05 4.2 3.8 4.9 5520
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Fig. 7. Mach contour lines for the Ringleb flow after 10,000 time steps on the mesh sequence of Fig. 6 using ADER-FV (M = 3) with
piecewise linear boundaries.
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7.3. Shock–vortex interaction in two dimensions

In this section we study the interaction of a vortex with a steady shock wave. This leads to complicated flow
patterns where smooth and discontinuous features, namely acoustic waves and shock waves, are present. The
governing equations solved in this section are the two-dimensional Euler equations (20)–(23) with c = 1.4.

The setup of this test case is taken from [38]. The computational domain is defined as X = [0;2] · [0;1]. The
initial condition is given by a steady normal shock wave at x = 0.5 with a shock Mach number Ms. The vortex
is located initially at the position (xc,yc) = (0.25,0.5) and has the following distribution of angular velocity,
v/ðrÞ ¼

vm
r
a if r 6 a;

vm
a

a2�b2 r � b2

r


 �
if a 6 r 6 b;

0 else;

8>><>>: ð56Þ
with the radius r2 = (x � xc)
2 + (y � yc)

2. According to [38] the density and the pressure are given inside the
isentropic vortex as a function of the temperature T and the undisturbed upstream values of density, pressure
and temperature, q0, p0 and T0, respectively:
pðrÞ ¼ p0

T ðrÞ
T 0

� � c
c�1

; qðrÞ ¼ q0

T ðrÞ
T 0

� � 1
c�1

: ð57Þ
y . 521
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The undisturbed upstream temperature T0 can be computed from the ideal gas law p = qRT, where we set the
gas constant to R = 1. The temperature inside the vortex is then given as the solution of the following ordinary
differential equation:
Fig. 8.
vortex
dT
dr
¼ c� 1

Rc
v/ðrÞ2

r
: ð58Þ
We furthermore define the Mach number Mv = vm/c0 to characterize the vortex strength where c0 is the speed
of sound on the upstream side of the shock. The parameters used for the following computations are:
a = 0.075, b = 0.175, Ms = 1.5 and Mv = 0.7. The undisturbed upstream values outside the vortex are
q0 = 1, u0 ¼ 1:5

ffiffiffi
c
p

and p0 = 1. The downstream (post-shock) values are given according to the Rankine–
Hugoniot relations as follows: q1 ¼ 9cþ9

9c�1
, u1 ¼ ð9c�1Þ

6ðcþ1Þ
ffiffiffi
c
p

and p1 ¼ 7cþ2
2cþ2

.

A contour plot of the density of the initial condition is given in Fig. 8, where a typical unstructured mesh
for this problem with characteristic mesh length h = 1/50 is also depicted. The numerical results obtained at
t = 0.7 on triangular meshes with h = 1/200 and h = 1/500 using ADER finite volume schemes from second to
fourth order of accuracy can be seen in Fig. 9. The results on the fine mesh using schemes with higher order
than two are in very good agreement with the solution given in [38], obtained with a third order ENO scheme
on a Cartesian grid with a mesh spacing of h = 1/512. For a physical discussion of the results, see [38] and
references therein, since in this article we focus mainly on the numerical aspects of the proposed ADER-
FV schemes. From Fig. 9 one can clearly see the drastic increase of the resolution of the acoustic waves gen-
erated in this problem when using high order schemes. It is clear that second order TVD methods, which are
currently the state-of-the-art methods used in most finite volume based unstructured CFD solvers, are not able
to capture the emitted sound field and the discontinuous flow structures of this problem simultaneously.
7.4. Interaction of a shock wave with a wedge in two dimensions

To validate the correct treatment of solid wall boundary conditions we now apply the proposed quadra-
ture-free ADER-FV scheme to a flow that involves the interaction of a mild shock wave with a two dimen-
sional wedge. For this test case, excellent experimental reference data is available in form of Schlieren
photographs [54,40].

The computational domain X has the extent X = [�2;6] · [�3;3], where the tip of a wedge with length L = 1
and height H = 1 is placed at x = 0. On all three edges of the wedge as well as on the top and on the bottom of
x
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Unstructured mesh (h = 1/50) and 30 equally spaced density contours from 0.5 to 2 showing the initial condition of the shock–
interaction problem.



Fig. 9. Numerical Schlieren images at time t = 0.7 for the shock–vortex interaction problem using ADER-FV schemes from second to
fourth order of accuracy (top to bottom) and a mesh spacing of h = 1/200 (left) and h = 1/500 (right), respectively.
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the computational domain we impose solid (reflective) wall boundary conditions. On the left and on the right,
the exact solution according to the Rankine–Hugoniot conditions is imposed as inflow boundary condition.

The initial condition for the shock wave with shock Mach number Ms = 1.3 is given according to the
Rankine–Hugoniot relations by
ðq; u; v; pÞð~x; 0Þ ¼
ð2:122; 0:442; 0:0; 1:805Þ if x < �1:0;

ð1:4; 0:0; 0:0:; 1:0Þ if x P �1:0:

�
ð59Þ
We use a triangular mesh of a characteristic mesh spacing of h = 1/100 and apply the third and fourth
order version of the quadrature-free ADER-FV scheme with HLLE leading flux and HLL-type corrector.
The mesh consists of about 1.2 million triangles. The numerical Schlieren images obtained with the fourth
order method are depicted in Fig. 10. Comparing our results qualitatively with the Schlieren images pro-
duced by Schardin [40] we note an excellent agreement. All the reflected and refracted waves as well as the
vortices shed from the wedge are resolved correctly. Our set of images corresponds to pictures 2, 5, 8 and
17 shown in [40]. Since our computational domain has a larger extent in y-direction than the wind tunnel
used for the experiments, the reflection from the upper and lower walls occur later in our computation
than in the experiments. The numerical results are in excellent agreement with the experimental reference
data. The same results have been obtained with the third order scheme, so that the third order results are
not shown here.



Fig. 10. Numerical Schlieren images for the shock–wedge interaction problem in 2D using the fourth order quadrature-free ADER-FV
scheme on an unstructured triangular grid with mesh spacing h = 1/100. Output times from top left to bottom right: t = 1.5, t = 2.0,
t = 2.5, t = 4.0.
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7.5. Double Mach reflection problem in two dimensions

Whereas the discontinuities in the previous shock–vortex and shock–wedge interaction examples were
rather mild, we now consider a more difficult and very well-known test case, the so-called double Mach reflec-
tion problem, originally proposed by Woodward and Colella in [58]. It exhibits very strong discontinuities,
wall-bounded flows and furthermore develops rich small-scale structures in time that are difficult to resolve.
The test consists in a moving shock wave (shock Mach number Ms = 10) that hits a 30� ramp. The initial
condition for this problem is given by the Rankine–Hugoniot conditions as follows:
ðq; u; v; pÞð~x; 0Þ ¼
ð8:0; 8:25; 0:0; 116:5Þ if x < 0:1;

ð1:4; 0:0; 0:0:; 1:0Þ if x P 0:1:

�
ð60Þ
Due to our unstructured formulation we are able to compute the problem directly in its original physical
setup, whereas most of the authors of other publications on this test case rotate the ramp such that it becomes
parallel to the x-axis and then specify a special boundary condition on the top for the incoming shock wave.
After these modifications, the problem can be computed also on a Cartesian grid. On triangular meshes, one
does not need such devices since the geometry can be easily meshed automatically by the mesh generator,
simply specifying the desired triangular mesh spacing. We solve the problem with the third and fourth order
version of our quadrature-free finite volume schemes using the following characteristic triangular mesh spac-
ings: h = 1/50, h = 1/100, h = 1/200 and h = 1/400. Solid wall boundary conditions are imposed on the ramp
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and on the upper boundary (y = 2). Our results for the density (31 equidistant contour levels from 1.5 to 21.5)
are depicted in Figs. 11 and 12. The contour lines agree qualitatively with the results shown in previous pub-
lications on this test problem [3,30,31,47]. For the case h = 1/50 also the unstructured triangular mesh is de-
picted, see the top picture in Fig. 11.

The slip surfaces present in this test case may become unstable on sufficiently refined meshes and may start
rolling. Although the form of the roll-up and the resulting small-scale structures are unphysical due to the lack
of the physical molecular viscosity, the amount of rolling is believed to be a qualitative indicator of the amount
of numerical viscosity introduced by the scheme. In Fig. 13 we therefore show a zoom into the roll-up region
obtained with the third order version of our method on the left and obtained with the fourth order variant on
the right on the finest mesh with h = 1/400. It can be clearly seen in Fig. 13 that on the same mesh the amount
of rolling is much larger for the fourth order scheme than for the third order method, underlining the benefits
of high order schemes in test cases with rich small scale structures.

We note that the HLLE flux was used as leading flux, in connection with the HLL-type corrector. This
seems to be necessary for this test case with very strong shock waves, since the original Godunov flux together
with the Roe-type corrector was subject to both very well-known shock wave instabilities present even in first
Fig. 11. Density contour levels obtained for the double Mach reflection problem with third order quadrature-free ADER-FV schemes.
The mesh spacings are h = 1/50 (top) and h = 1/100 (bottom). The unstructured triangular mesh is depicted for the case h = 1/50.



Fig. 12. Density contour levels obtained for the double Mach reflection problem with third order quadrature-free ADER-FV schemes.
The mesh spacings are h = 1/200 (top) and h = 1/400 (bottom).

Fig. 13. Zoom into the double Mach reflection problem on the finest mesh (h = 1/400) using third order (left) and fourth order (right)
quadrature-free ADER-FV schemes.
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order finite volume computations with certain Riemann solvers, namely the so-called kinked Mach stem and
the carbuncle phenomenon, see for example [19]. These two shock wave instabilities, which mainly depend on
the choice of the Riemann solver, were even observable in our high order computations on unstructured tri-
angular meshes in those regions of the mesh where many edges are aligned with the flow.

7.6. Shock tube problems in three dimensions

In this section we consider classical one-dimensional shock tube problems, however, computed in a fully
three-dimensional setting. We choose a computational domain of the shape of a circular cylinder, as used
in real shock tube wind tunnels. The domain has the length L = 1, ranging from x = �0.5 to x = +0.5, with
a uniform cylinder radius of R = 0.1. The irregular unstructured tetrahedral mesh used for our computations
is depicted in Fig. 14 and contains 60507 tetrahedral elements with a typical edge length of 0.01. This corre-
sponds to an equivalent one-dimensional resolution of 100 cells. We solve the full three-dimensional Euler
equations without source term with the following initial condition:
ðq; u; v;w; pÞð~x; 0Þ ¼
ðqL; uL; 0; 0; pLÞ if x < 0;

ðqR; uR; 0; 0; pRÞ if x > 0:

�
ð61Þ
The values of the left and right initial states for the various test cases are given in Table 8. The first case
corresponds to a modification of the standard Sod test case, proposed in [48]. It contains a sonic point in
the rarefaction fan that usually leads to the well-known sonic glitch problem [36] for most Riemann solvers
used in first order finite volume schemes. The second test case is also known as the Lax shock tube problem
and was proposed by Lax in [34] and is often computed in the research literature on high order WENO
schemes. Test case 3 was introduced to show on the one hand the capability of the proposed method to capture
discontinuities that are very close to each other and on the other hand to deal with very severe pressure jumps
without producing negative pressure values. Note that the pressure in the initial condition of case 3 jumps over
five orders of magnitude from 103 down to 10�2. The fourth and last shock tube problem exhibits the partic-
ular feature of a very slowly moving shock wave that can cause problems for numerical methods and that can
lead to spurious oscillations. More detailed information on the setup and the physical meaning of test cases 3
and 4 can be found in [48]. For the first and second test case we use the third and the fourth order quadrature-
free finite volume schemes proposed previously in this article and for test cases three and four we use the third
order scheme since the adjacent discontinuities in test three and the slowly moving shock in case four caused
trouble for the fourth order method. Probably, for these more severe test cases a monotonicity preserving MP-
WENO technique [45,3] should be implemented. A Courant number of CFL ¼ 1

2
, based on the smallest in-

sphere diameter appearing in the entire computational domain, was used in all test cases. In all computations
presented in this section we used the exact Riemann solver for the leading flux and the Roe-type corrector
given by Eq. (35). The results depicted in Fig. 15 show the reconstructed solution wp for the density q on
100 equidistant sample points taken on the x-axis (y = z = 0) at the final output times tend given in Table 8.
Generally we note that in all test cases only relatively few oscillations are visible which confirms the essentially
non-oscillatory character of the proposed nonlinear reconstruction schemes. Furthermore, the discontinuities
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Table 8
Initial states left and right and simulation end times for the 3D shock tube problems

Test case qL uL pL qR uR pR tend

1 1.0 0.75 1.0 0.125 0.0 0.1 0.20
2 0.445 0.698 3.528 0.5 0.0 0.571 0.14
3 1.0 0.0 1000. 1.0 0.0 0.01 0.012
4 5.99,924 19.5975 460.895 5.99242 �6.19633 46.0950 0.035
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are well resolved within only few intermediate points. In particular, we note that for test case 1 the sonic glitch
problem, known for many first order methods, is not present in our third and fourth order computations. It is
known that non-entropy satisfying fluxes, especially linearized Riemann solvers, will produce an unphysical
rarefaction shock in this point. Also the Lax problem (test case number 2) does not cause many problems
for our proposed third and fourth order quadrature-free ADER-FV method with characteristic WENO recon-
struction. There are only very small oscillations visible between the contact discontinuity and the shock, which
is very well resolved within two points. Our method also behaves very robustly for the more severe test case 3.
Only a very small overshoot is visible between the two discontinuities. For the last test case 4 we get good
non-oscillatory results for the slowly moving shock wave, see Fig. 15, and only some small oscillations behind
the strong right-moving shock.
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Fig. 15. Results for the 3D shock tube problems computed on the irregular tetrahedral mesh shown in Fig. 14.
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Generally, we conclude that the our proposed nonlinear schemes can handle well also solutions that are
mainly determined by (strong) shock waves and other discontinuities.

7.7. Shock–density interaction in three dimensions

A very important one-dimensional test case, which will be presented in this section, was proposed by Shu
and Osher [42] and was developed to show the advantages of high order schemes. We compute this problem
solving the full three-dimensional Euler equations on a three-dimensional computational domain X that is
defined by X = [�5;5] · [�0.075;0.075]2. X is discretized using a regular tetrahedral mesh as shown in
Fig. 4 for the convergence studies. We use a characteristic edge length of 0.025 resulting in 72,000 tetrahe-
drons. This corresponds to an equivalent one-dimensional resolution of 400 elements in the x-direction.

The solution of this example contains simultaneously a strong shock wave, smooth nonlinear acoustic
waves and also entropy waves of high frequency, which are difficult to resolve with low order methods.
The initial condition is given by
Test
ðq; u; v;w; pÞð~x; 0Þ ¼
ð3:8571; 2:6294; 0; 0; 10:333Þ if x < �4;

ð1þ 0:2 sinð5xÞ; 0; 0; 0; 1Þ if x P �4;

�
ð62Þ
which causes the shock to move at a Mach number of M = 3.0 into the sinusoidal density fluctuation. We use the
proposed quadrature-free ADER-FV schemes of second and fourth order of accuracy with the HLLE flux as
leading flux and the HLL-type corrector, as given by Eq. (38). Simulations are performed until the final output
time t = 1.8. The solution is depicted in Fig. 16 evaluating the reconstruction polynomials wp for the density q on
the x-axis (y = z = 0) using 1000 equidistantly spaced sample points. Thus, the plots shown in Fig. 16 are over-
sampled and one can also see the behaviour of the reconstruction polynomials inside the elements.

We clearly see that the resolution of the second order schemes is not sufficient to resolve the high frequency
entropy waves. Looking closely at Fig. 16 one can see a TVD-like behaviour of our second order reconstruc-
tion since extrema are clipped. The resolution of the fourth order ADER-FV scheme is much better and the
smooth high frequency waves behind the shock wave are captured very well. However, albeit the very good
resolution of the fourth order scheme, no spurious oscillations are visible in the vicinity of the shock wave.
Our numerical solution is in almost perfect agreement with the reference solution which was computed in
1D using a second order TVD finite volume scheme and 10,000 elements.

7.8. Three-dimensional explosion problem

Whereas the previous three dimensional computations were still purely one-dimensional test problems,
although computed in a fully three-dimensional setting, in this section we solve a genuinely three dimensional
test case, for which, however, a spherically symmetric reference solution can still be computed. The governing
x
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equations are the Euler equations in three space dimensions and the computational domain is a sphere of
radius R = 1, with the following initial condition:
ðq; u; v;w; pÞð~x; 0Þ ¼
ð1:0; 0; 0; 0; 1:0Þ if k~xk < 0:4;

ð0:125; 0; 0; 0; 0:1Þ if k~xkP 0:4:

�
ð63Þ
This test problem can be interpreted as a three-dimensional version of the Sod shock tube problem and is
discussed further in [48]. Exploiting the rotational symmetry of this test case, one can reduce the problem
to a one-dimensional system of PDEs with source term, that can be solved on a very fine mesh in order to
produce a reliable reference solution [48]. We solve the problem on an irregular tetrahedral mesh with smallest
edge length 2 · 10�2, which corresponds to an equivalent spatial resolution of 1003 elements on a structured
Cartesian grid. Our tetrahedral mesh used in this computation contains about 2.3 million tetrahedrons and is
depicted in Fig. 17. We solve the problem using second, third and fourth order quadrature-free ADER-FV
schemes with characteristic WENO reconstruction. The HLLE flux is used as leading flux together with the
HLL-type corrector. The computations were performed on the HLRB2 supercomputer of the LRZ in Mün-
chen, Germany, using 128 Intel Itanium2 Madison 9 M processors, each with 4 GB of RAM and 1.6 GHz
clock speed. The wallclock times used for the second, third and fourth order simulation were 33 min,
54 min and 100 min, respectively. The results on the positive x-axis are depicted in Fig. 18 showing the recon-
struction polynomial for the density q on 100 equidistantly distributed sample points. The reference solution
was computed solving the equivalent one-dimensional PDE with source term using a second order TVD
scheme and 10,000 elements. One can clearly see the essentially non-oscillatory behaviour of the proposed
quadrature-free ADER-FV schemes with characteristic WENO reconstruction as well as the increase in res-
olution for the higher order methods even in the direct vicinity of the discontinuities. We emphasize that in
particular the beginning and the end of the rarefaction fan are difficult to capture and that especially here,
the higher order schemes perform better.

7.9. Low Mach number flow past a sphere

In the previous three-dimensional examples, we compared our unstructured quadrature-free finite volume
schemes with exact solutions available for one-dimensional shock tube problems exhibiting discontinuous
Fig. 17. Spherical tetrahedral mesh used for the three-dimensional explosion test problem.
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Fig. 18. Results on the positive x-axis for the 3D explosion test problem.
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solutions. However, many problems arising in computational fluid dynamics (CFD) are not always and nec-
essarily dominated by shock waves or other discontinuities, but by rather smooth flow features appearing at
moderate to very low Mach numbers, such as airflow around cars, gliders and dirigibles or air flows through
ducts and cooling fans.

This section is therefore dedicated to an application of the proposed method to the low Mach number flow
around a sphere. The sphere has a radius of R = 1 and the computational domain is X = [�10;10]3. The
incoming flow, which we also use as an initial condition for this test problem, is parallel to the positive x-axis
and has the following properties: M1 = 10�2, c = 1.4, q1 = 1, and p1 = 1/c, c1 = 1, u1 = M1c1 = 10�2.
The exact solution of the potential flow around the sphere, which is a very good theoretical approximation
for this problem, is given in the xy-plane for the angular and radial velocities as follows:
v/ðr;/Þ ¼ �u1 sinð/Þ 1þ 1

2

R
r

� �3
 !

; vrðr;/Þ ¼ u1 cosð/Þ 1� R
r

� �3
 !

: ð64Þ
We emphasize that the reference solution is steady and has two stagnation points on the x-axis at
~x1 ¼ ð�1; 0; 0Þ and at ~x2 ¼ ð1; 0; 0Þ. It is furthermore symmetric with respect to the x-axis. Bassi and Rebay
[5] and Dumbser and Munz [20] have shown in a two-dimensional setting that high order unstructured discon-
tinuous Galerkin schemes that do not use a curved boundary approximation will fail on this test problem since
the numerical solution will become unsteady, non-symmetric and will not exhibit the two stagnation points.

We now solve this problem using a fourth order quadrature-free ADER-FV scheme with characteristic
WENO reconstruction in order to show that the method also behaves very well in this difficult low Mach number
test case. We emphasize that no curved boundary representation is used here. The sphere is simply approximated
by the triangular surfaces of the adjacent tetrahedrons. The unstructured mesh used for this computation con-
tains 20,1722 tetrahedrons. The problem was solved again on 128 CPUs of the HLRB2 supercomputer in Mün-
chen, consuming 7.25 h wallclock time for 22,470 time steps. The velocity iso-surfaces and some streamlines
computed from our numerical solution are shown in Fig. 19. The depicted solution is perfectly converged to
steady state and we clearly can see the two stagnation points and the expected symmetry properties. In order
to quantify these results, the reconstructed solution wp is evaluated on circles with different radii (r = 1.0,
r = 1.5 and r = 2.0) on 90 equidistantly spaced sample points in the xy-plane and in the yz-plane, see the left
and the right sub-figures in Fig. 20, respectively. The agreement between the numerical solution and the refer-
ence solution is almost perfect. In the left sub-figure, we show the reconstructed angular velocity in the xy-plane
and in the right sub-figure we show the same quantity in the yz-plane (/ = 90�). Due to symmetry, the quantities
should not depend on the second azimuthal angle h and thus should remain constant.



Fig. 19. Velocity iso-surfaces and streamlines around the sphere. Left: u – iso-surfaces. Right: w – iso-surfaces.
7.10. Interaction of a shock wave with a half cone in three dimensions

The setup of this test case is similar to the two dimensional shock–wedge interaction problem studied in
Section 7.4.

In the x-direction the computational domain X covers the interval [�1.5;3], and in the y � z plane it consists
of a half circle of radius R = 2.25 with its center on the x-axis. A circular half cone with length L = 1, tip
radius R1 = 0.02 and foot radius R2 = 0.5 is placed with its tip on the origin. Solid wall boundary conditions
are imposed everywhere on the cone and on the mantle surface of the half cylinder that constitutes the bound-
ary of the computational domain. On the top (x = �1.5) and on the bottom (x = 3) of the half cylinder, the
exact solution according to the Rankine–Hugoniot conditions of a shock wave with shock Mach number
Ms = 1.3 is imposed. The initial condition that produces this shock wave is identical to the one given in
Eq. (59) in Section 7.4, setting the third velocity component w = 0 everywhere. The computational mesh used
for this computation, which is by far the largest presented in this article, consists of 9.3 million tetrahedrons.
A view of the mesh is depicted in Fig. 21, where we do not show tetrahedrons with y < 0 and x < �0.5 to be
able to visualize also the mesh in the interior of the computational domain. We emphasize that the unstruc-
tured mesh generation for this large-scale application took only about 20 min with very few manual user inter-
actions. The simulation was performed using a third order ADER-FV scheme on 1024 CPUs of the HLRB2
supercomputer at the Leibniz Rechenzentrum (LRZ) in München, Germany. The computation until the final



Fig. 21. View of the unstructured tetrahedral mesh with 9.3 million elements used for the computation of the shock-half cone interaction
problem.

Fig. 22. Numerical Schlieren images at t = 2.5 for the shock-half cone interaction problem in 3D using the third order quadrature-free
ADER-FV scheme on an unstructured tetrahedral mesh. Left: Cut in x–y-plane. Right: Cut in x–z-plane.
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output time t = 2.5 took 15 h wallclock time for 7134 time steps. To facilitate the comparison with the two-
dimensional results, we show two cuts in the x–y- and in the x–z-plane, respectively, in Fig. 22. The results
agree qualitatively with the two-dimensional results. We note, however, that the reflected wave in three space
dimensions is much weaker than in two space dimensions. Whereas in 2D a sharp interface was present, in 3D
we notice an almost smooth transition. Two three-dimensional views of the cone together with density iso-sur-
faces and streamlines can finally be seen in Figs. 23 and 24, where the torus-shaped vortex shedding behind the
half cone can be seen.



Fig. 23. Density contour surfaces and streamlines at t = 2.5 for the shock-half cone interaction problem seen from behind the cone. On
can clearly see the refracted primary shock wave, the reflected waves and the vortex half ring shedded from the half cone.

Fig. 24. Zoom into the streamlines and the density contour surfaces of the vortex half ring at t = 2.5 for the shock-half cone interaction
problem seen from behind the cone.
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8. Summary and conclusions

To our knowledge, the scheme proposed in this article is the first high order non-oscillatory quadrature-free
finite volume scheme for nonlinear hyperbolic systems on unstructured triangular and tetrahedral meshes in
two and three space dimensions. Also the technique for applying the proposed type of characteristic WENO
reconstruction yielding the whole polynomial information in each element on unstructured meshes is new. The
Cauchy–Kovalewski procedure as a main building block applied onto the reconstructed non-oscillatory piece-
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wise polynomials directly provides a space–time Taylor series for the conserved quantities and the physical
fluxes. This information is sufficient to construct a highly accurate space–time dependent numerical upwind
flux that can be subsequently integrated analytically in space and time and thus allows the construction of
a high order accurate quadrature-free one-step finite volume scheme. This was achieved by a splitting of
the flux into a leading term evaluated at the space–time barycenters of the element interfaces and a space–time
dependent corrector flux, which is a linear function of four arguments instead of two, as is usually the case for
numerical flux functions used in the context of finite volume schemes. Whereas the particular feature of the
possibility to construct a one-step time stepping scheme was already previously used in the research literature,
as for example in the original work of Harten et al. on ENO schemes [27] and furthermore in the family of
ADER-FV and ADER-DG schemes [17,21,33,47,49,51], the use of the Cauchy–Kovalewski procedure to
avoid numerical quadrature in space and time is new. For this purpose the system of governing PDEs is rewrit-
ten in the coordinate system of the reference element which allows to compute the space–time integrals appear-
ing in our method in a mesh-independent way, once and for all, analytically. A similar approach of obtaining a
quadrature-free formulation via the Cauchy–Kovalewski procedure may also be feasible in the framework of
discontinuous Galerkin finite element schemes. This will be explored in future work.

This feature of the proposed method is of particular importance on unstructured tetrahedral meshes in
three space dimensions, where numerical quadrature could become very expensive for high order finite volume
schemes. We emphasize that the original WENO reconstruction that reconstructs point-values in all Gaussian
quadrature points could not be used to construct a quadrature-free finite volume method since for this pur-
pose the whole polynomial information is necessary inside the elements. We emphasize that with the quadra-
ture-free approach only one leading flux and one corrector flux has to be computed for each element face. This
leads to a total of eight flux evaluations for tetrahedral elements in 3D per element per time step, independent
of the order of the method. In comparison, using a standard fifth order WENO scheme together with a third
order TVD Runge–Kutta time stepping method, one would need at least seven spatial Gaussian integration
points per face [44] and three Runge–Kutta stages in time, leading to 21 flux evaluations per element face
and time step. On three-dimensional tetrahedral meshes, this method would require 84 numerical flux evalu-
ations per element per time-step and 84 nonlinear WENO reconstructions in characteristic variables, since the
standard WENO scheme reconstructs point values [30] and not entire polynomials. In our approach, we only
need one nonlinear WENO reconstruction per element and time step, but this reconstruction is more expensive
than the point-wise WENO reconstruction since we have to reconstruct all polynomial coefficients and we
must consider all characteristic directions simultaneously. We remark furthermore that standard pointwise
WENO reconstruction schemes have the advantage of obtaining a higher order of accuracy than our method
considering the union of all stencils. Although we think to have reduced the computational effort for the non-
linear WENO reconstruction as much as possible, it is still the most expensive part of the whole algorithm,
consuming about 75% of the CPU time. Compared with the computational effort needed for reconstruction,
the CPU time requirements for the Cauchy–Kovalewski procedure of about 15% of the total CPU time are
relatively low. The remaining time (about 10%) is spent in the evaluation of the quadrature-free formulation
of the space–time integrals of the numerical flux.

We have shown the versatility of the proposed method on a large number of test cases computed on
unstructured triangular and tetrahedral meshes in two and three space dimensions, respectively. The high
order quadrature-free ADER finite volume scheme can be applied at the same time to low Mach number flow
and steady state problems as well as to very high Mach number flow. Since unstructured mesh generation can
be done almost automatically, the presented method could possibly close the gap in modern computational
fluid dynamics (CFD) and computational aeroacoustics (CAA) between the well-developed highly accurate
finite-difference solvers needing structured grids on the one hand and the usually only second order unstruc-
tured finite volume solvers on the other hand. A possible future extension of this method is the incorporation
of diffusion terms for the solution of the compressible Navier-Stokes equations. The final aim of our research
is to provide highly accurate direct numerical simulations (DNS) and large eddy simulations (LES) on
unstructured meshes in very complex geometries. To improve the computational efficiency of the method
further research will be carried out to implement a time-accurate local time stepping technique based on
the information generated by the Cauchy–Kovalewski procedure. This approach has already been successfully
implemented recently for Cauchy–Kovalewski based discontinuous Galerkin methods [18,35]. Because of the
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many points in common between ADER-DG and ADER-FV schemes, time-accurate local time stepping may
be also included in the unstructured quadrature-free ADER-FV method.
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